Talking Integration at DMEXCO

ChrisOHara_BeetTV

COLOGNE – At Salesforce, the acquisitions keep on coming, most recently that of AI-powered marketing intelligence and analytics platform Datorama. The company’s ongoing mantra is “integration” and it seems to have no shortage of assets to leverage in that quest.

It all stems from what Chris O’Hara, VP, Product Marketing, calls the “fourth industrial revolution” led by things like data, AI and the internet of things.

“It’s harder for marketers to deliver personalization at scale to consumers and that’s the goal. So everything we’re doing at Salesforce is really about integration,” O’Hara says in this interview with Beet.TV at the recent DMEXCO conference.

By way of examples, he cites the acquisition of ExactTarget about four years ago with the intention of making email “a very sustainable part of marketing, such that it’s not just batch and blast email marketing but it’s also your single source of segmentation for the known consumer.” The end result was the ExactTarget Marketing Cloud Salesforce Integration.

In late 2016, Salesforce bought a company called Krux and within six months had morphed it into Salesforce DMP. It was a way to assist marketers in making sense of households “comprised of hundreds of cookies and dozens of different devices” and aggregate them to a single person or households “so can get to the person who makes the decision about who buys a car or what family vacation to take,” O’Hara says.

Salesforce DMP benefits from machine-learned segmentation, now known as Einstein Segmentation, to make sense out of the thousands of attributes that can be associated with any given individual and determine what makes them valuable. Developing segments by machine replaces “you as a marketer using your gut instinct to try to figure out who’s the perfect car buyer. Einstein can actually tell you that.”

In March of 2018, MuleSoft, one of the world’s leading platforms for building application networks, joined the Salesforce stable to power the new Salesforce Integration Cloud. It enables companies with “tons of legacy data sitting in all kinds of databases” to develop a suite of API’s to let developers look into that data and “make it useful and aggregate it and unify it so it can become a really cool, consumer-facing application, as an example.”

Datorama now represents what O’Hara describes as a “single source of truth for marketing data, a set of API’s that look into campaign performance and tie them together with real marketing KPI’s and use artificial intelligence to suggest optimization.”

In addition to driving continual integration, Salesforce sees itself as “democratizing” artificial intelligence, according to O’Hara. “There’s just too much data for humans to be able to make sense of on their own. You don’t have to be a data statistician to be able to use a platform like ours to get better at marketing.”

This interview is part of a series titled Advertising Reimagined: The View from DMEXCO 2018, presented by Criteo. Please find more videos from the series here.

Advertisements

Watch: Talking AI at Programmatic IO NY

 

 

How AI will Change UX

user_experience_sarah_weise In 1960, the US Navy coined a design principle: Keep it simple, stupid.

When it comes to advertising and marketing technology, we haven’t enjoyed a lot of “simple” over the last dozen years or so. In an increasingly data-driven world where delivering a relevant customer experience makes all the difference, we have embraced complexity over simplicity, dealing in acronyms, algorithms and now machine learning and artificial intelligence (AI).

When the numbers are reconciled and the demand side pays the supply side, what we have been mostly doing is pushing a lot of data into digital advertising channels and munching around the edges of performance, trying to optimize sub-1% click-through rates.

That minimal uptick in performance has come at the price of some astounding complexity: ad exchanges, third-party data, second-price auctions and even the befuddling technology known as header bidding. Smart, technical people struggle with these concepts, but we have embraced them as the secret handshake in a club that pays it dues by promising to manage that complexity away.

Marketers, however, are not stupid. They have steadily been taking ownership of their first-party data and starting to build marketing tech stacks that attempt to add transparency and efficiency to their outbound marketing, while eliminating many of the opaque ad tech taxes levied by confusing and ever-growing layers of licensed technology. Data management platforms, at the heart of this effort to take back control, have seen increased penetration among large marketers – and this trend will not stop.

This is a great thing, but we should remember that we are in the third inning of a game that will certainly go into extra innings. I remember what it was like to save a document in WordPerfect, send an email using Lotus Notes and program my VCR. Before point-and-click interfaces, such tasks were needlessly complex. Ever try to program the hotel’s alarm clock just in case your iPhone battery runs out? In a world of delightful user experience and clean, simple graphical interfaces, such a task becomes complex to the point of failure.

Why Have We Designed Such Complexity Into Marketing Technology?

We are, in effect, giving users who want big buttons and levers the equivalent graphical user interface of an Airbus A380: tons of granular and specific controls that may take a minute to learn, but a lifetime to master.

How can we change this? The good news is that change has already arrived, in the form of machine learning and artificial intelligence. When you go on Amazon or Netflix, do you have to program any of your preferences before getting really amazing product and movie recommendations? Of course not. Such algorithmic work happens on the back end where historical purchases and search data are mapped against each other, yielding seemingly magical recommendations.

Yet, when airline marketers go into their ad tech platform, we somehow expect them to inform the system of myriad attributes which comprise someone with “vacation travel intent” and find those potential customers across multiple channels. Companies like Expedia tell us just what to pay for a hotel room with minimal input, but we expect marketers to have internal data science teams to build propensity models so that user scores can be matched to a real-time bidding strategy.

One of the biggest trends we will see over the next several years is what could be thought of as the democratization of data science. As data-driven marketing becomes the norm, the winners and losers will be sorted out by their ability to build robust first-party data assets and leverage data science to sift the proverbial wheat from the chaff.

This capability will go hand-in-hand with an ability to map all kinds of distinct signals – mobile phones, tablets, browsers, connected devices and beacons – to an actual person. This is important for marketers because browsers and devices never buy anything, but customers do. Leading-edge companies will depend on data science to learn more about increasingly hard-to-find customers, understand their habits, gain unique insights about what prompts them to buy and leverage those insights to find them in the very moment they are going to buy.

In today’s world, that starts with data management and ends with finding people on connected devices. The problem is that executing is quite difficult to automate and scale. Systems still require experts that understand data strategy, specific use cases and the value of an organization’s siloed data when stitched together. Plus, you need great internal resources and a smart agency capable of execution once that strategy is actually in place.

However, the basic data problems we face today are not actually that complicated. Thomas Bayes worked them out more than 300 years ago with a series of probabilistic equations we still depend on today. The real trick involves packaging that Bayesian magic in such a way that the everyday marketer can go into a system containing “Hawaiian vacation travel intenders” for a winter travel campaign and push a button that says, “Find me more of these – now!”

Today’s problem is that we depend on either a small amount of “power users” – or the companies themselves – to put all of this amazing technology to work, rather than simply serving up the answers and offering a big red button to push.

A Simpler Future For Marketers?

Instead of building high-propensity segments and waiting for users to target them, tomorrow’s platforms will offer preselected lists of segments to target. Instead of having an agency’s media guru perform a marketing-mix model to determine channel mix, mar tech stacks will simply automatically allocate expenditures across channels based on the people data available. Instead of setting complex bid parameters by segment, artificial intelligence layers will automatically control pricing based on bid density, frequency of exposure and propensity to buy – while automatically suppressing users who have converted from receiving that damn shoe ad again.

This is all happening today, and it is happening right on time. In a world with only tens of thousands of data scientists and enough jobs for millions of them, history will be written by the companies clever enough to hide the math on the server side and give users the elegance of a simple interface where higher-level business decisions will be made.

We are entering into a unique epoch in our industry, one in which the math still rules, but the ability of designers to make it accessible to the English majors who run media will rule supreme.

It’s a great time to be a data-driven marketer! Happy New Year.

Follow Chris O’Hara (@chrisohara) and AdExchanger (@adexchanger) on Twitter.