Data Triangulation: How Second-Party Data Will Eat The Digital World

bearsharkMarketers are getting frustrated with spending up to 60% of their working media dollars to fund intermediaries between themselves and their publishing partners. By the time a marketer pays his agency, trading desk, exchange, third-party data provider, and subsidizes the publisher’s ad serving stack, dollars turn into dimes. Marketers want less fraud, more people, less ad tech, and to put more media dollars to work to drive performance. Quality publishers, who for so long sacrificed control for access to an always-on stream of programmatic cash, are now seeing balance return, as shady sources of inventory leave the ecosystem and start to create scarcity for premium supply.

Publishers with desired audiences are starting to leverage hacks like “header bidding” and private marketplaces to get more control and capture more revenue from transactions. But they are also starting to look at data-only transactions among trusted demand-side partners. Now that marketers are catching up with DMP technology, securely sharing audiences becomes possible, opening up a new era where “second party” data is poised to reign supreme. Before we talk about how that happens, let’s first define some data terms:

A Primer

First-party data is proprietary data that marketers and publishers have collected – with permission, of course – and, therefore, own. It can be cookies collected from a site visit, offline data onboarded into addressable IDs and even data from marketing campaigns. Second-party data is simply someone else’s first-party data. Second-party data gets created any time two companies strike up a deal for data that is not publicly available. The most common use case is that of a marketer – say a big airline –getting access to data for a publisher’s frequent travelers. Big Airline might say to Huge News Site with business travelers, “Let’s user match, so every time I see one of my frequent flyers on your site, I can serve him an ad.” Huge News Site may decide to allow Big Airline to target its users wherever they are found (a “bring your own data” deal) or make such a deal incumbent upon buying media. Either way, Big Airline now has tons of really valuable Huge News Site reader data available in its data-management platform (DMP) for modeling, analysis and targeting.

Despite the much heralded death or merely diminution of third-party data, it is still a staple of addressable media buying. This is data that is syndicated and made available for anyone to buy. This data could describe user behavior (Polk “auto intenders” of various stripes) or bucket people into interesting addressable segments based on their life circumstances (Nieslen “Suburban Strivers”), describe a user’s income level (Acxiom or Experian) or tell you where a user likes to go via location data (PlaceIQ or Foursquare). Most demand-side platforms (DSPs) make a wide variety of this data available within their platforms for targeting, and DMPs enable users to leverage third-party data for segment creation – usually allowing free usage for analytics and modeling purposes and getting paid upon successful activation. Data Quality And Scale So, which kind of data is the best? When asked that question by a marketer, the right question is inevitably, “all of it.” But, since that’s an annoying answer, let’s talk about the relative scale and value of each type of data. It’s easily visualized by this wonderfully over-simplified triangle:

TRIANGLE OF DATA

First-party data is the most limited in scope, yet the most powerful. For marketers –especially big CPG marketers who don’t get a lot of site traffic – first-party data is incredibly sparse but is still the absolute most valuable signal to use for modeling. Marketers can analyze first-party data attributes to understand what traits and behaviors consumers have in common and expand their reach using second- or third-party data. Retail and ecommerce players are more fortunate. A Big Box Store has first-party data out the wazoo: loyalty card data, point-of-sale system data, app data, website registration data, site visit data and maybe even credit card data if it owns and operates a finance arm. It can leverage a DMP to understand how media exposure drove a store visit, where customers were in the store (beacons!), what was purchased, how many coupons were remitted and whether or not they researched their purchase on the site. Talk about getting “closed loop” sales attribution. The power of first-party data is truly amazing.

The biggest problem with third-party data is that all of my competitors have it. In programmatic marketing, that means both Ford and Chevy are likely bidding on the same “auto-intender” and driving prices up. The other problem is that I don’t know how the data was created. What attributes went into deciding whether or not this “auto intender” is truly in-market for a car? There are no real rules about this stuff. A guy who read the word “car” in an article might be an “auto-intender” just as someone who looked a four-door sedans three times in the last 30 days on reputable auto sites. Quality varies. That being said, there is huge value in having third-party data at your disposal. Ginormous Music App, for example, has built a service that is essentially a DMP for music; it knows how to break down every song, assign very granular attributes to it and delivers highly customized listening experiences for free and paid users. Those users are highly engaged, have demonstrated a willingness to buy premium services and are, by virtue of their mobile device, easily found at precise geolocations. Yet, for all of that, the value to a marketer of a Maroon Five segment is rather small. Everyone likes Maroon Five, from grandmothers to tweens to Dads. A Maroon Five segment provides little value to an advertiser. Yet, if Ginormous Music App could push its app-based user data (IDFAs) into the cookie space and find a user match, it could effectively use third-party data to understand the income, behavior and general profile of many Maroon Five fans. And that’s what their advertisers like to buy. That’s pretty damn valuable.

So, how about “second-party” data? These are the “frequent business travelers” on Huge News Site and the “Mitsubishi intenders” on Large Auto Site. These are real users, with true demonstrated intent and behavior that has been validated on real properties. One of the most valuable things about audiences built on second-party data is that there is usually transparency regarding how those users found their way into a segment.

The ironic and kind of beautiful thing about the emergence of second-party data is that it is most often merely a connection to a premium publisher’s users. However, it can be uncoupled from a publisher’s media sales practice. Marketers, increasingly sick of all the fraud and junk in the programmatic ecosystem are turning toward second-party data to access the same audiences they bought heavily in print 30 years ago. This time, however, they are starting to get both the quality – and the quantitative results – they were looking for. On the flip side, quality publishers are starting to understand that, when offered in a strict, policy-controlled environment that protects their largest asset – audience data – they can make way more money with data deals than media deals.

Put simply, second-party data is heralding a return to the good old days when big marketers depended on relationships with big publishers as the stewards of audiences, and they created deep, direct relationships to ensure an ongoing value exchange. Today, that exchange increasingly happens through web-based software rather than martini lunches.

[This article originally appeared in AdExchanger on 1/25/16]

Advertisements

Leapfrogging the Lumascape

Leapfrogging-baby-elephants-at-chester-zoo-by-Mike-ShawMarketers have always craved access to quality audience at scale. That was once as easy as scheduling buys on the top three broadcast networks and buying full-page ads in national newspapers. Today, the world is more complicated, with attention shifting into a splintered digital universe of thousands of channels across multiple media types.

Ad tech companies have tried to corral a massively expanding world of inventory in ad exchanges, along with the means to bid inside them. This “programmatic” world of inventory procurement is deeply flawed, yet still the best thing we have at the moment.

It’s flawed because it mostly offers access to commoditized “display” ad units of dubious value and struggles to deliver real audiences, rather than robots. But it’s also good because we have taken the first steps past a ridiculous paradigm of buying media through relationships and fax machines, while starting to bring an analytical discipline to media investment that is based on measurement.

So, as we sled the downward slope of the programmatic buying Hype Cycle, we are starting to see some new trends in inventory procurement – namely, a strategy that involves replacing some or all of the licensed programmatic architecture, as well a growing reliance on one’s own data.

But first, before we get into the nuts and bolts of how that works, some history:

The Monster We Created

After convincing ourselves of the lack of scalability in the direct model, where we would call an ad rep, we have set up a lot of distance between a marketer and their desired audience.

chrisoharachart1-921

Imagine I am a cereal manufacturer and have discovered through media mix modeling that digital moms on Meredith sites drive a lot of offline purchases. They are the “household CEOs” that drive grocery store purchasing, try new things and are influential among their peer group, in terms of recommending new products. In today’s new media procurement paradigm, there are many “friends” standing between my target and me:

  • Media agency: This is a must-have, unless marketers want to add another 100 people to their headcount with an expertise in media, but this adds 5% to 10% in costs to media buys.
  • Trading desk: Although many marketers are starting to take this functionality in-house, whether you trade internally or leverage an agency trading desk, you can expect 10% to 15% of media costs to go to the personnel needed to run this type of operation.
  • Demand-side platform (DSP): Don’t forget about the technology. A 15% bid reduction fee is usually required to leverage the smart tools necessary to find your inventory at scale across exchanges.
  • Private marketplace: But wait! We use private marketplaces to make exclusive deals among a small pool of preferred vendors. Yes, but they operate inside DSPs and carry transactional fees that can add between 5% and 10% extra.
  • Third-party data: You can’t target effectively without adding a nice layer of audience data on your buy, but expect to pay at least $1 CPM for the most basic demographic targeting – a significant percentage of cost even on premium buys.
  • Exchanges: Maybe you pay for this via your DSP, but someone is paying for a seat on an ad exchange and that cost is passed through a provider, which can add another several percentage points.
  • Supply-side platform (SSP): It’s not just the demand side that needs to leverage expensive technology to navigate the new world of digital media. Publishers pay up to 15% in fees to deploy SSPs, a smart inventory management technology to help them manage their “daisy chain” of networks and channel sales providers to get the best yield. This is baked into the media cost and passed along to the advertiser.
  • Ad server: Finally, the publisher pays a fee to get the ad delivered to the site. It is a somewhat small price, but one that is passed along to the advertiser, usually baked in to the media cost.

This is essentially the middle of a crowded LUMAscape, a bunch of different disintermediating technologies that stand between an advertiser and the publisher. Marketers pay for everything I just described. They may not license the publisher’s SSP for them, but they are subsidizing it. After running this gauntlet, marketers with $10 to spend on “cereal moms” end up with much less than half in media value – the amount the publisher ends up with after the disintermediation takes place. This can be anywhere from 10% to 40% of the working media spend.

That’s probably the biggest problem in ad tech right now.

We’ve essentially created a layer of technology so gigantic in between marketers and audiences, that 60% to 70% of media investment dollars land up in venture-funded technology companies’ hands, rather than the media owner creating the perceived value. How do we change that paradigm?

chrisoharachart2-921

Leapfrogging the Middleware

Data management technology is increasingly replacing some of the middleware in this procurement equation, effectively writing the third chapter in the saga we know as programmatic direct.

Here is a bit of background.

What I call “Programmatic Direct 1.0” was the short-lived period in which companies leveraging the DoubleClick for Publishers (DFP) ad-serving API built static marketplaces of premium inventory.

For example, a premium publisher like Forbes might decide to place a chunk of 500,000 home page impressions in a marketplace at a $15 CPM. Buyers could go into an interface, transact directly with the publisher and secure the inventory. The problem that inventory owners had a hard time valuing their future inventory and buyers weren’t keen to log into yet another platform to buy media. This phase effectively ended with the Rubicon Project buying several leaders in the space, ShinyAds and iSocket, and AdSlot taking over workflow automation software provider Facilitate Media. Suddenly, “programmatic direct” platforms started to live inside systems where media planners actually bought things.

Programmatic direct’s second act (2.0) is prevalent today. Companies use deal IDs or build PMPs within real-time systems and exchanges to have more control over procurement than what is available in an auction environment. Sellers can set prices and buyers can secure rights to inventory at a set, transparent cost. This works pretty well, but comes with the same gigantic stack of providers as before and includes additional transaction fees. This is akin to making a deal to buy a house directly from the owner, but agreeing to pay the real estate broker fee anyway. The thing about programmatic direct transactions is that they are fundamentally different than RTB because they don’t have to take place in “real time,” nor do they involve bidding. A brand-new set of pipes is required.

“Programmatic direct 3.0” – or whatever we decide to call it – looks a bit different. Let’s say the big cereal company uses a data-management platform (DMP) to collect its first-party data and creates segments of users from both offline user attributes and page-level attributes from site visitation behavior. The marketers have created a universal ID (UID) for every user. Let’s imagine they discovered 200,000 were females, 24 to 40 years old, living in two-child households with income greater than $150,000 and interested in health and fitness. Great.

Now imagine that a huge women’s interest site deployed its own first-party DMP and collected similar attributes about their users, who were assigned UIDs. If the marketer and publisher have the same enterprise data architecture, they could match their users, make a deal and discover that there’s an overlap of 125,000 of users on the site. Maybe the marketer agrees to spend $7 CPM to target those users, along with users who are statistically similar, every time they are seen on the site for November.

The DMP can push that segment directly into the publisher’s DFP. No trading desk fees, DSP fees, third-party data costs or SSPs involved. The same is true for a variety of companies that have built header bidding solutions, although they see less data than first-party DMPs.

With this 3.0 approach, most of the marketer’s $7 is spent on media, rather than a basket of technologies, and the publisher gets to keep quite a bit of that revenue.

Sounds like a good deal.

Follow Chris O’Hara (@chrisohara) and AdExchanger (@adexchanger) on Twitter.