DMP · Media Buying · Media Measurement · Media Planning

Trends in Programmatic Buying

 

thefuture
The digital marketing future we were promised years ago looks pretty lame in retrospect. This is an image of a trading desk supervisor at Razorfish, circa 2013.

2015 has been one of the most exciting years in digital driven marketing to date. Although publishers have been leading the way in terms of building their programmatic “stacks” to enable more efficient selling of digital media, marketers are now catching up. Wide adoption of data management platforms has given rise to a shift in buying behaviors, where data-driven tactics for achieving effectiveness and efficiency rule. Here’s a some interesting trends that have arisen.

 

Purchase-Based Targeting

Remember when finding the “household CEO” was as easy as picking a demographic target? Marketers are still using demographic targeting (Woman, aged 25-44) to some extent, but we have seen a them shift rapidly to behavioral and contextually based segments (“Active Moms”), and now to Purchase-Based Targeting (PBT). This trend has existed in categories like Automotive and Travel, but is now being seen in CPG. Today, marketers are using small segments of people who have actually purchased the product they are marketing (“Special K Moms”) and using lookalike modeling to drive scale and find more of them. These purchase-defined segments are a more precise starting point in digital segmentation—and can be augmented by behavioral and contextual data attributes to achieve scale. The big winners here are the folks who actually have the in-store purchase information, such as Oracle’s Datalogix, 84.51, Nielsen’s Catalina Solutions, INMAR, and News Corp’s News America Marketing.

Programmatic Direct

For years we have been talking about the disintermediation in the space between advertisers and publishers (essentially, the entire Lumascape map of technology vendors), and how we can find scalable, direct, connections between them. It doesn’t make sense that a marketer has to go through an agency, a trading desk, DSP an exchange, SSP, and other assorted technologies to get to space on a publisher website. Marketers have seen $10 CPMs turn into just $2 of working media. Early efforts with “private marketplaces” inside of exchanges created more automation, but ultimately kept much of the cost structure. A nascent, but quickly emerging, movement of “automated guaranteed” procurement is finally starting to take hold. Advertisers can create audiences inside their DMP and push them directly to a publisher’s ad server where they have user-matching. This is especially effective where marketers seek as “always on” insertion order with a favored, premium publisher. This trend will grow in line with marketers’ adoption of people-based data technology.

Global Frequency Management

The rise in DMPs has also led to another fast-growing trend: global frequency management. Before marketers could effectively map users to all of their various devices (cross-device identity management, or CDIM) and also match users across various execution platforms (hosting a “match table” that assures user #123 in my DMP is the same guy as user #456 in DataXu, as an example), they were helpless to control frequency to an individual. Recent studies have revealed that, when marketers are only frequency capping at the individual level, they are serving as many as 100+ ads to individual users every month, and sometimes much, much more. What is the user’s ideal point of effective frequency is only 10 impressions on a monthly basis? As you can see, there are tremendous opportunities to reduce waste and gain efficiency in communication. This means big money for marketers, who can finally start to control their messaging—putting recovered dollars back into finding more reach, and starting to influence their bidding strategies to get users into their “sweet spot” of frequency, where conversions happen. It’s bad news for publishers, who have benefitted from this “frequency blindness” inadvertently. Now, marketers understand when to shut off the spigot.

Taking it in-House

More and more, we are seeing big marketers decide to “take programmatic in house.” That means hiring former agency and vendor traders, licensing their own technologies, and (most importantly) owning their own data. This trend isn’t as explosive as one might think, based on the industry trades—but it is real and happening steadily. What brought along this shift in sentiment? Certainly concerns about transparency; there is still a great deal of inventory arbitrage going on with popular trading desks. Also, the notion of control. Marketers want and deserve more of a direct connection to one of their biggest marketing costs, and now the technology is readily available. Even the oldest school marketer can license their way into a technology stack any agency would be proud of. The only thing really holding back the trend is the difficulty in staffing such an effort. Programmatic experts are expensive, and that’s just the traders! When the inevitable call for data-science driven analytics comes in, things can really start to get pricey! But, this trend continues for the next several years nonetheless.

Closing the Loop with Data

One of the biggest gaps with digital media, especially programmatic, is attribution. We still seem to have the Wannamaker problem, where “50% of my marketing works, I just don’t know which 50%.” Attitudinal “brand lift” studies, and latent post-campaign sales attribution modeling has been the defacto for the last 15 years, but marketers are increasingly insisting on real “closed loop” proof. “Did my Facebook ad move any items off the shelf?” We are living in a world where technology is starting to shed some light on actual in-store purchases, such that we are going to able to get eCommerce-like attribution for corn flakes soon. In one real world example, a CPG company has partnered with 7-11, and placed beacon technology in the store. Consumers can receive a “get 20% off” offer on their mobile device, via notification, when the they approach the store; the beacon can verify whether or not they arrive at the relevant shelf or display; and an integration with the point-of-sale (POS) system can tell (immediately) whether the purchase was made. These marketing fantasies are becoming more real every day.

Letting the Machines Decide

What’s next? The adoption of advanced data technology is starting to change the way media is actually planned and bought. In the past, planners would use their online segmentation to make guesses about what online audience segments to target, an test-and-learn their way to gain more precision. Marketers basically had to guess the data attributes that comprised the ideal converter. Soon, algorithms will atart doing the heavy lifting. What if, instead of guessing at the type of person who buys something, you could start with the exact composition of that that buyer? Today’s machine learning algorithms are starting at the end point in order to give marketers a hige edge in execution. In other words, now we can look at a small group of 1000 people who have purchased something, and understand the commonalities or clusters of data attributes they all have in common. Maybe all buyers of a certain car share 20 distinct data attributes. Marketers can have segment automatically generated from that data, and expend it from there. This brand new approach to segmentation is a small harbinger of things to come, as algorithms start to take over the processes and assumptions of the past 15 years and truly transform marketing.

It’s a great time to be a data-driven marketer!

 

Media Planning

Do Digital Media Agencies Have a Plan?

dude-wheres-my-carDigital agencies used to get paid for unpacking an incredibly complicated digital landscape for marketers. Faced with all kinds of new marketing opportunities, advertisers turned to savvy digital agencies to figure out where to spend their money, and how much of it to dedicate to display, mobile and social channels.

The dingy little secret was that the agencies didn’t really plan much of anything. The way it worked was that agency planners would make an Excel template, create an RFP document, instruct the media owners to send back all kinds of creative ideas and fill out the media plan template. RFPs sent publisher teams spinning into action, churning out exciting-looking PowerPoints with screenshots and suggested spending levels.

Not much of this was scientific. Publishers often promised more inventory than could be delivered, knowing they would never get the full budget allocation. Agencies asked for various “budget levels,” knowing they would allocate only $50,000 per publisher – but asking to see $200,000 plans to get a better sense of where CPMs might be negotiated. At the end of the day, the agencies would pick the winners and losers, usually the five publishers on the last plan, plus a few “challengers” or new ideas to impress the client with “innovation.” Once the plan went live, publishers could count on a quick cancellation or massive change to the contracted plan. Nothing ever seemed written in stone once the first impression was served.

Sounds pretty lame, right? Sadly, a lot of media is still planned this way. But, thanks to all kinds of programmatic innovation, times are rapidly changing and digital agencies are going to have to find out how to change with it.
In the old paradigm, agencies largely provided value by dealing with the intricacies of negotiating with vendors, moving data from plans to ad servers and billing systems and keeping clients in the loop on how their digital media “investments” were performing. Optimization was largely defined as cancelling a bad deal and re-allocating budget into a better one.
Today’s ad technology has given marketers and their agencies a lot more knobs and buttons to push. We are rapidly seeing a shift away from manual, Excel-based processes to nimble, web-based planning technology, driven by centralized data.
There are no spreadsheets inside of MediaMath or AppNexus. Publishers don’t offer PowerPoints in iSocket or AdSlot. And agencies are pushing legacy media-buying systems like MediaOcean and Strata to adapt to a digital world without spreadsheets and fax machines. A host of new, web-based planning and buying systems (like Bionic!) are also starting to disrupt the status quo, as agencies try and reconcile the old ways of buying media with a world in which billions of ad impressions are available through interfaces and big clients like P&G say they are going to buy up to 70% of ads programmatically.

Recently, a big European group of publishers introduced an RFP to have their entire digital inventory catalogued and made available through “programmatic direct” technology. Publishers want to give advertisers the efficiency and access they crave but have complete control over pricing and availability. That’s where the world is heading.
So what happens to an agency whose sole digital expertise consists of sending out Excel templates for publishers to fill out with pricing and avails? Sounds like the value they have been providing – lots of manual horsepower to help with complicated workflow – is going to become completely irrelevant. You can buy all the social media you want through easy-to-use interfaces.

It’s easy to hire a few smart “traders” and give them access to a DSP and gain access to the universe of inventory available in programmatic RTB. And now it’s increasingly easy to negotiate premium inventory deals inside programmatic platforms and secure those guaranteed impressions. A number of big marketers have decided it’s so easy that they are starting to do it themselves by bringing digital marketing in-house.
Digital media agencies’ legacy business models are expiring faster than a Madison Avenue parking meter. What should innovative agencies be doing to change and continue to provide real value to their clients?

  • Planning: “Planning” is not planning anymore. It’s investment management. Even though there are new ways to procure the media, your clients still need to know how it’s performing and moving the needle for their business. Figure out how to measure beyond clicks and common CPA metrics and try to get inside your clients’ real budget numbers. Are you gaining access to the client’s P&L and first-party data so you can help them measure by more important metrics, such as net new customers?
  • Teaching: Just because desktop display and social ads are commoditized doesn’t mean clients don’t need to understand the latest ways to rise above the noise. Are you schooling your clients on nascent native mobile opportunities or the latest ways to leverage RTB video to enable branding at scale? These are ideas that come with the help of vendors and publishers, but agencies need to stop collating others’ ideas and start helping vendors translate their opportunities into the framework of the client’s business. That is where the right digital agency can provide value.
  • Doing: The manual, spreadsheet-driven world of “22-year-old media planners” where labor, rather than strategy, was at a premium are over. But, in a programmatic world, execution – the “doing” – is more important than ever. Reallocating budgets to match performance cannot be totally algorithm-driven when spending is across multiple channels in systems that do not speak to each other. Agencies are perfectly positioned to be in the middle of dozens of systems, reconciling spending and performance against both long- and short-term client goals. That’s a job that can only be done by people.

The irony of today is that lot of systems are starting to make digital media planning less complicated from a transactional and workflow standpoint but the overall digital landscape is more complicated to navigate than ever. The digital media agencies that survive must change the way they plan, teach their clients and execute in order to survive and thrive.

[This post originally appeared in AdExchanger on 7.25.14]

Marketing · Media Buying · Media Measurement · Media Planning

Creating the Fabled 360 View of the Consumer

ImageDespite years of online targeting, the idea of having a complete, holistic “360 degree view” of the consumer has been somewhat of a unicorn. Today’s new DMP landscape and cross-device identification technologies are starting to come close, but they are missing a key piece of the puzzle: the ability to incorporate key social affinities.

In the nearby chart, you can see that online consumers tell us all about themselves in a number of ways:

Viewing Affinities: Where they go online and what they like to look at provides strong signals of what they are interested in. Nielsen, comScore, Arbitron and others have great viewership/listenership data that is strong on demographics, so we can get a great sense of the type of folks a certain website or show attracts. This is great, but brands still struggle to align demographic qualities perfectly with brand engagement. 34 year old men should like ESPN, but they could easily love Cooking.com more.

Buying Affinities: What about a person’s buying habits? Kantar Retail, OwnerIQ, and Claritas data all tell us in great detail what people shop for and own—but they lack information on why people buy the stuff they do. What gets folks staring at a shelf to “The Moment of Truth” (in P&G parlance) when they decide to make a purchase? The buying data alone cannot tell us.

Conversational Affinity: What about what people talk about online? Radian6 (Salesforce), Crimson Hexagon, and others really dig into social conversations and can provide tons of data that brands can use to get a general sense of sentiment. But this data, alone, lacks the lens of behavior to give it actionable context.

Social Behavioral Affinity: Finally, what about the actions people take in social environments? What if we could measure not just what people “like” or “follow” online, but what they actually do (like post a video, tweet a hashtag, or engage with a fan page)? That data not only covers multiple facets of consumer affinity, but also gives a more holistic view of what the consumer is engaged with.

Adding social affinity data to the mix to understand a consumer can be a powerful way to understand how brands relate to the many things people spend their time with (celebrities, teams, books, websites, musicians, etc.). Aligning this data with viewing, buying, and conversational data gets you as close as possible to that holistic view.

Let’s take an example of actionable social affinity in play. Say Whole Foods is looking for a new celebrity to use in television and online video ads. Conventional practice would be to engage with a research firm who would employ the “Q Score” model to measure which celebrity had the most consumer appeal and recognition. This attitudinal data is derived from surveys, some with large enough sample sizes to offer validity, but it is still “soft data.”

Looking through the lens of social data, you might also measure forward affinity: how many social fans of Whole Foods expressed a Facebook “like” for Beyonce, or followed her account on Twitter? This measurement has some value, but fails at delivering relevance because of the scale effect. In other words, I like Beyonce, so does my wife, and so does my daughter . . . along with many millions of other fans—so many that it’s hard to differentiate them. The more popular something is, the broader appeal and less targetability that attribute has.

So, how do you make social affinity data relevant to get a broader, more holistic, understanding of the consumer?

Obviously, both Q Score and forward affinity can be highly valuable. But when mixing viewing, buying, and listening with real social affinity data, much more becomes possible. The real power of this data comes out when you measure two things against one another. Sree Nagarajan, CEO of Affinity Answers, explained this mutual affinity concept to me recently:

“In order for the engagement to be truly effective, it needs to be measured from both sides (mutual engagement). The parallel is a real-world relationship. It’s not enough for me to like you, but you have to like me for us to have a relationship. Mapped to the brand affinity world, it’s not enough for Whole Foods fans to engage with Beyonce; enough Beyonce fans have to engage with Whole Foods (more than the population average on both sides) to make this relationship truly meaningful and thus actionable. When true engagement is married with such mutual engagement, the result is intelligence that filters out the noise in social networks to surface meaningful relationships.”

As an example, this approach was recently employed by Pepsi to choose Nicki Minaj as their spokesperson over several other well-known celebrities.

What else can social affinity data do?

  • Brands can use social affinity data to decide what content or sponsorships to produce for their users. Looking at their users’ mutual affinity between the brand and music, for example, might suggest which bands to sponsor and blog about.
  • A publisher’s ad sales team can use such data to understand the mutual affinity between itself and different brands. A highly correlated affinity between activated social visitors to GourmetAds’ Facebook page and those who post on Capital One’s Facebook page may suggest a previously unknown sales opportunity. The publisher can now prove that his audience has a positive predisposition towards the brand, which can yield higher conversions in an acquisition campaign.
  • What about media buying? Understanding the social affinity of fans for a television show can produce powerful actionable insights. As an example, understanding that fans of “Teen Wolf” spend more time on Twitter than Facebook will instruct the show’s marketing team to increase tweets—and post more questions that lead to increased retweets and replies. Conversely, an Adult Swim show may have more Facebook commenters, leading the marketer to amplify the effect of existing “likes” by purchasing sponsored posts.
  • Keyword buying is also interesting. Probing the mutual affinities between brands and celebrities, shows, music acts, and more can yield long tail suggested keyword targets for Google, Bing/Yahoo, and Facebook that are less expensive and provide more reach than those that are automatically suggested. As an example, when “Beavis and Butthead” re-launched on MTV, Google suggested keywords for an SEM campaign such as “Mike Judge” (the show’s creator) and “animated show.” Social affinity data suggested that socially activated Beavis fans also loved “Breaking Bad.” Guess what? Nobody else was bidding on that keyword, and that meant more reach, relevance, and results.

I believe that understanding social affinity data is the missing piece of the “360 degree view” puzzle. Adding this powerful data to online viewing, buying, and social listening data can open up new ways to understand consumer behavior. Ultimately, this type of data can be used to generate results (and measure them) in online branding campaigns that have thus far been elusive.

Want a full view of the people who are predisposed to love your brand? Understand what you both mutually care about through social affinities—and measure it.

[This post originally appeared in AdExchanger on 4.14.14]

 

Media Buying · Media Planning · Programmatic Direct

The Battle for Workflow Automation: What’s Next for “Programmatic Direct”

ImageEven though programmatic RTB has seen the lion’s share of venture capital funding and an enormous amount of innovation, RTB buying only accounts for 20%-30% of all digital media dollars. The real money still flows through the direct buying process, with agencies spending up to 400 hours and $50,000 to create the typical campaign, and publishers burning through 1,600 hours a month and 18% of their revenue responding to RFPs. What a mess….and an opportunity.

Everybody’s battling for a slice of that direct sales pie, and the game is all about helping buyers and sellers automate the manual processes that drive almost 80% of transactional value.

The Holy Grail for both sides is a web based, connected platform that will enable planners and sellers to thrust aside Excel, and start to transact business in the cloud. Although a number of companies have tried and failed to deliver on the promise of workflow automation, the time seems ripe for true adoption, as agencies are being challenged by their clients to create the same programmatic efficiencies across all media channels that they have embraced with RTB. As we speak, winners and losers are being selected, so let’s look at the landscape.

When you look at all of the companies providing a slice of the end-to-end workflow just in digital media execution, it’s hard to imagine that there can be “one system to rule them all” or a true “OS” for digital media. Yet, the dream is just that: An end-to-end comprehensive “stack” that handles media from research through to billing, and eliminates the many manual tasks and man hours involved in connecting the dots. But what are the realities? Let’s saddle up this unicorn and take a ride:

The End of the End-to-End Stack?

The notion of a single end-to-end “stack” for the digital marketer is a tough vision to execute upon. Build a system that has every little feature that a huge agency needs and you have effectively built something no one else can use. The flip side is building something so standardized that individual organizations find little value in it. The “operating systems” of the future that will win should enable agencies and marketers to leverage a standard operating system, but customize it with their own pricing, performance, and vendor data. This enables the efficiency of standardization while enabling data to provide the “secret sauce” that media shops need to justify their fees.  More importantly, the modern operating system for media must be extensible, to allow for a wide variety of point solutions to integrate seamlessly. The right system will certainly eliminate a few logins, but must not limit the numbers of tools that can be accessed through it. That concept necessitates a highly modern, scalable, API-driven, web-based platform. It will be interesting to see how today’s legacy systems (which are exactly the opposite of what I have described) adapt.

Hegemon Your Bets

Several years ago, I wrote that the merger between Mediabank and Donovan may actually be a good thing—provided it offered more choice, flexibility, and open standards. Looking some three years later, I am not sure agencies have any more of that today. Like any other near monopoly, Mediaocean has a disincentive to open up its ecosystem because it invites competition. So time will tell whether their nascent “Connect” effort will become a way for agencies to quickly consolidate their “stack” around a flexible operating system—or if it’s just an integration tax for vendors (a revenue strategy quickly becoming known as the “Lumascrape”). After an IPO, the company will face enormous quarterly pressure for growth. It will be hard to raise prices on already stretched agencies, so publishers will be in the crosshairs. I smell “marketplace” and some monetization strategies around “programmatic direct” enablement for guaranteed media. And what about open standards? Despite years of work by the IAB, the standards and protocols for creating electronic ordering and invoicing are still very much in flux.

Connecting the Dots

More than anything else, the most exciting thing happening in digital media is seeing real programmatic connections between buyers and sellers for guaranteed media. After so much innovation in programmatic RTB (hundreds of vendors, billions in venture capital), we now have some amazing pipes that impressions can flow through. Unfortunately, this has largely been limited to lower classes of inventory and focused almost exclusively on the DR space. Creating the same programmatic efficiencies for “premium” brand-safe inventory is now starting to happen. Whether it comes from new “programmatic direct” pure play technologies, or happens through the RTB pipes, it will not happen successfully without transparency. That means giving publishers control over their inventory, pricing, and what demand partners can access their marketplaces. Will these connections thrive? Not if vendors charge network-like fees, arbitrage media, or don’t provide transparency. Will the endemic fraud in programmatic RTB push more transactions outside the RTB pipes? I think so, and a lot of publishers (see Yahoo/AOL/Microsoft deal) are betting that there are better ways for buyers to access their inventory.

Time for Real Time

Look at all the RTB players who want a piece of the guaranteed action. Three of them (Rubicon, Appnexus, and Pubmatic) will IPO soon, and be under tremendous pressure to increase revenue, margins, and continue to innovate and find new markets. When international expansion stops providing double-digit growth increases, then it’s time to look toward new streams of demand generation—namely, the 80% of deals not currently flowing through their pipes. Those pipes have been engineered for real-time bidding, but guaranteed deals are neither real-time nor bidded. Can they innovate fast enough to provide real value between buyers and sellers? Can they apply years of innovation in DSP and SSP tech to the more prosaic problem of workflow automation? Probably, but there are still business model issues to work out. Most of these companies have put a stake in the ground for either publishers or marketers, and a transactional platform must be agnostic to sit in the middle. It will be interesting to see how new offerings are received in the marketplace.

As the Chinese curse says, “may you live in interesting times.” Indeed, the past several years of ad tech has been nothing but interesting, but the real action is just starting—and it’s taking place in what was the most uninteresting field of workflow automation.

[This post originally appeared in AdExchanger on 3.12.14]

Media Buying · Media Planning · Programmatic Direct · Programmatic Premium

The Four Keys to Programmatic Direct Success

SuccessI was recently talking to the Chief Digital Officer of a large agency that does a lot of digital media buying. He has been working closely with a number of software providers to standardize his operations on a media management system. Getting all his vendor information, order management, and billing information has been a huge undertaking. Apparently, half the battle at an agency is getting paid (getting paid in less than 120 days is the other half)!

We were talking about some of the upfront processes behind putting together a media plan, which were mostly manual: putting the actual plan together in Excel, trading e-mails back and forth with vendors in the RFP process, trafficking ad tags, collecting screenshots, etc. Wouldn’t it be valuable if computers could streamline much of that work, and connect buyers and sellers together more seamlessly?

He agreed that it would truly transform his business, but accepted much of that manual work as part of the cost of doing business (paid for, incidentally, by his clients). The real way to transform his business, he said, was to answer the following questions. If “programmatic direct” technologies simply nailed down these four things, the payoff would be enormous. I paraphrase his answers below:

How much should I buy?  “I basically know that I am going to have AOL, Yahoo, Facebook, and GDN on almost every plan. For my more vertical clients, in auto for example, I also know 95% of the sites and networks I am going to be on. Sure, I use research tools to validate those recommendations to my clients, but media discovery is not a huge pain point. Where we struggle is answering the question of media investment allocation. Should I spend 30% of my budget with Facebook? 40%? I really don’t know, and often don’t have the right mix until the campaign is nearly over. It would be great to have some business intelligence built into a system that recommended my guaranteed media mix programmatically.”

What should I pay? “I also have a pretty good idea what things cost, thanks to the RFP process. When you RFP 40 publishers in a vertical, you find out pretty quickly what your best pricing for guaranteed media is, and you can leverage that information to insure you are giving your clients competitive rates. Unfortunately, it feels like we go through this exercise every time on every RFP. We have the historical pricing data, but it’s all over the place in spreadsheets—and often in the planner’s heads. It would be great if this information was in the same place, and if a system could make pricing recommendations up front in the process, which would also shorten the negotiation process with publishers.

Why am I recommending this?  “The biggest thing we struggle with is justifying our media choices to our clients. When we present a recommendation, often we are asking our client to invest hundreds of thousands or even millions in an individual vendor. My deck has to have more in it than basic audience information. I have to talk about the media’s ability to perform and hit certain KPIs for the price. It would be really useful to have recommendations come with some metrics on how such placements performed historically, or even some data on how other, similar, investments moved the needle in the past. Right now, getting to that data is nearly impossible, and usual resides with your senior planner in the account. The other obvious problem with that is employee turnover. My best planners, along with everything they’ve learned over two or three years walk out the door along with my data and relationships. The right system should store all of that institutional knowledge.”

You need that when? “The other thing a system can help with is speed to market. Publishers hate it when we ask them for huge, innovative proposals—in 24 hours. The reason we do that is because our clients ask us for amazing and innovative media recommendations in 48 hours. The pressure to deliver plans is huge, and you can easily lose large chunks of business by reacting to such requests too slowly. What programmatic direct technology may be able to help with is giving planners access to tools that compress the pre-planning process down, and enable agencies to deliver thoughtful, data-backed recommendations out fast—and at scale.”

Especially for larger agencies, programmatic direct technology has to be more than just workflow efficiency tools and automating the insertion order. (Although that has to come first). The next generation of programmatic efficiency or guaranteed media has to include serious business intelligence tools that can solve the “how” while simultaneously answering “why.”

[This post orginally appeared in AdExchanger on 2.11.14]

Advertising Agencies · Media Buying · Media Planning · Programmatic Direct · Programmatic Premium

The Nuts and Bolts of Programmatic Direct

ImageAn interview with Econsultancy’s Monica Savut and me, on the recently published programmatic direct whitepaper.

Econsultancy: Why now? In other words, why has this “programmatic direct” trend been on the radar lately? What’s driving all of the conversation the space?

Chris O’Hara: It’s really something my boss Joe Pych calls the “Sutton Pivot,” inspired by the famous thief Willie Sutton who robbed banks “because that’s where the money was.” Over 70% of digital display dollars are transacted in a very manual way today. Despite all the LUMAscape hype over RTB, most of the digital money still gets transacted through the request-for-proposal (RFP) process. Everybody wants a piece of the action, hence the “Sutton pivot,” in which all the ad tech companies are running to try and provide automation technology for directly sold deals. It’s actually a good thing. Today’s process for buying guaranteed digital media can take over 40 steps and suck up over 10% of media budgets just in man hours.

Q: The concept of “programmatic direct” or “programmatic premium” is a relatively new phenomenon, but it’s really just about automating the buying process for digital media, right? What makes it different from the automation happening in real-time bidding? What’s the difference?

A: Real-time bidding, or what we are starting to call “programmatic RTB” has been a real boon to the industry. We now have a set of “pipes” which connect demand- and supply-side platforms that make the digital media procurement process hugely efficient. Today’s systems are modern, cloud-based, scalable, and super low latency. We are seeing the type of liquidity and deal flow that happens in systems like NYSE and NASDAQ. That said, 70% of buying that happens in digital is neither “real time” nor “bidded.” It’s just two organizations trying to make a deal. You need different technology to enable that kind of guaranteed transaction, and marketers are starting to wonder why they are paying so much in transactional costs to access higher classes of digital inventory. RTB proved that efficiency can happen in digital, and now marketers want faster and more efficient access to more than just remnant inventory.

Q: You say that agencies have a “perverse incentive” to embrace efficiency in buying. It would seem counter to everything that is happening in the programmatic space at the moment. How do demand side business models need to adapt for programmatic direct to become a reality?

A: Agencies make money when plans take 400 hours to create. Manually trafficking line items in an ad server, and cutting and pasting publisher insertion orders pays the bills for agencies who charge on a “cost-plus” basis. Digital media agencies have been operating that way for years: hire cheap, work the “23 year old media planner” hard, and earn a mark-up on their labor. Nothing wrong with work-for hire, but the RTB phenomenon—and marketers experience with easy-to-use programmatic platforms in search and social marketing—have changed the dynamic entirely. Agencies have to do more than heavy lifting now to survive. They need to hire fewer, smarter, people to leverage systems—and more great creative and analytical people to make sure they are driving digital messages that inspire—and meet KPIs. The days of getting paid to traffic ads in MediaVisor are over. That’s a big time cultural change for agencies. A lot of shops won’t survive the transition, and that’s a good thing.

Q: What are some of the things—beyond cultural change—that need to happen to create this new era of programmatic direct efficiency? What’s missing?

A: We tend to think of digital as this highly advanced form of marketing, but it’s really the most backwards. Direct mail costs something like $750 per thousand (CPM) to put a catalog in the mail—and marketers like LL Bean make that number work consistently. Digital struggles to make $10 CPA goals work on $5 products. That’s really lame. Part of the problem is the lack of basic information available to the marketer. If I want to buy a direct mail list, I can find out how many folks in the list live in San Francisco, and have purchased a product by credit card in the last month. I can find out how much it costs to by that list—and who sells it. Until recently digital media has had no such directory. Not only that, but the industry lacks even the most basic set of electronic ordering protocols, that can enable systems to understand each other in electronic transactions. The good news is that more work has occurred on this front in the last two weeks than has happened in the 5 years the IAB has been promoting “eBusiness” initiatives. Look for some significant announcements in this area soon.

Q: Who benefits most from adopting programmatic direct strategies? Publishers? Agencies? The marketers themselves? Are there winners and losers if this new tactic sees adoption at scale?

A: It’s easy to say that “everyone’s a winner” with programmatic direct adoption at scale, but that’s not entirely true. I think publishers are the big winners, because they are starting to take some control back over the procurement process from the demand side. I think longer tail sites that depend on RTB revenue streams will continue to be able to get access to demand at scale through RTB systems, and still get their AdSense money. But what really excites me is seeing high quality publishers that own high quality real estate on category specific properties finally get more control over pricing and partner selection. This will be even more critical as publishers expand their offerings cross-channel, into video. Publishers need a programmatic way to sell their higher classes of inventory, and not be so dependent on prevailing procurement methodologies which overvalues biddable, commoditized inventory. Agencies who value higher class inventory also win, of course.

Q: Right now, the conversation (and action) seems limited to display media. How does “programmatic direct” impact cross-channel buying?

A: Everything digital will be bought “programmatically” in 5 years. Some will be RTB display, and some will be display, native, and video inventory purchased through “programmatic direct” platforms. Addressable television, digital out-of-home (DOOH), and other channels will also factor in. Once we can get a true unique identifier that makes sense from a technology and privacy standpoint (big question, obviously), then marketers will really be living in programmatic heaven.

Q: You’ve been working in the “programmatic direct” space for a long time (staring at TRAFFIQ in 2008), and yet there seems to be fairly little adoption of the concept among agencies. Are you crazy? Why keep doing it? Will there be a big payoff in the end?

A: Change is really hard, especially when the pace of change is as rapid as in digital ad technology. When I was on the publisher sales side, there was always something that bothered me about getting a $200,000 insertion order for digital advertising through a fax machine. That stuff still happens today. Ultimately, I so believe that true process automation will happen in digital media, and that we can free people in the space to stop doing a lot of manual grunt work, and start being truly creative. I was watching a documentary the other night, and an engineer was talking about why he loved his job. He said he spent the last three years building a bridge that eliminated 10 minutes from the commute for some 20,000 people a day. “I saved people over 50,000 days of productivity last year,” the engineer explained, adding, “I wonder what those people are doing with all that extra time.”

There are a lot of young people who go into an agency thinking that they are going to help make the next kick-ass viral ad, but they end up working until 10 o’clock at night pasting line items into an ad server. I really think that, if we can change that, great things will happen.

[Originally published 12/5/2013 on the Econsultancy blog]

Media Buying · Media Planning

We’ve Got it all Backwards (Guest Post)

IntendersDigital Display Can Create Customers, Not Just Close Them

The large majority of marketers put a ton of money into traditional marketing channels, using “branding media” to drive interest in their products. Later, they allocate digital budget for “scooping them up” with retargeting and other cookie-based targeting tactics. After all, “intenders” have already raised their hand digitally, making them easy to find. They already have expressed an interest in the marketers product by visiting the website, leaving something in a shopping cart, or just “looking like” the typical customer. In the classic “AIDA” funnel, the “Awareness” budget at the very top of the funnel rarely gets any digital allocation.

Maybe this is 100% backwards.

Television advertising is about creating enough buzz to drive customers towards Interest, Desire, and Action. TV, radio, and print do this fairly well at scale. Media is easy to buy, has mass reach, and relatively standard creative formats, which lower the cost of broadscale market penetration. But that is changing. Traditonal media is losing people’s attention, which is becoming increasingly divided between mobile, tablet, and desktop screens. Folks are using the DVR and Netflix to avoid marketing altogether, and forget about the kids. You have to basically trick them with “native” ads or actually produce a buzzworthy YouTube video to get their attention. That’s impossible to scale.

What about digital approaches to branding? Can you actually create customers in digital, rather than just scooping them up with retargeting and other lower-funnel tactics? The answer is yes…with the right way to measure. Cookie-based measurement will always fail to give the progressive marketer the right answers. Common issues (deletion, do-not-track, multiple-device, etc.) mean we can only see 30% of online conversions from a particular campaign—never mind the offline sales digital receives 0% attribution for.

What if we used the right metrics, which could reveal the real impact digital branding has on new customer creation? One of those metrics is profit optimization: the concept of understanding what a products optimal sales should be in one geo-targeted area. In other words, understanding how many ACME widgets are selling in Huntington, New York—and how many it should be selling, based on its profit potential. If you understand those numbers, even at a basic level, you can actually start to measure digital success and uncover the “invisible” digital customers you might have. They are the people you can’t see online—because they don’t actually exist (as cookies) yet.

It’s a pretty simple equation: more and more time is spent online. But more sales occur offline. Looking at the graphic above, the concept is to try and pull the digital line backward, and engage the customers you can’t see online, leveraging digital media tactics for branding. By taking a pure digital approach in discrete markets, and measuring by nothing but profit optimization, you will be able to quickly see the hidden power of digital branding—and start creating more customers with digital, rather than marketing to those who have already expressed interest in your products.

[This guest post was authored by christopher Skinner, and appeared on Econsultancy on 11.25.13]

Media Buying · Media Planning

Every Marketer Needs to See this Napkin

Recently, I had a cup of coffee and a macaroon with a guy named Christopher Skinner. Christopher has spent the last dozen years or so running a company called MakeBuzz after selling his old company, Performics, to Doubleclick. Lately, he has been keynoting some of Google’s “Think” conferences. Google likes what his company does for them—after using his software, marketers start to spend a lot more money on branded display. In other words, instead of just loading up on keywords and obvious AdSense display inventory, marketers are leveraging data that says digital display works to build a brand’s customer base. Without getting too specific, the software offers geo-targeted media recommendations that aim to optimize profits in specific areas—helping a company go from selling 100 widgets a month in Poughkeepsie to 150.

When I asked what the secret sauce was, I was surprised at the answer. Christopher drew me something on a napkin that looked like this:

Napkin

The problem, he told me was that marketers weren’t striking the right balance between branding and direct response, and focusing too much on capturing customers they already had. In other words, if your business was like a lawn, and the profits were grass clippings, most folks were spending too much time cutting and not enough time fertilizing. To get the grass to grow, you want to fertilize it (branding) and get plenty of new blades to pop up as often as possible. When you cut it (direct response), you want to do so in a way that ensures it won’t get burnt, and lose its ability to sustain itself. It’s a delicate balance between growing demand through branding, and harvesting those efforts through direct response.

Looking at his crudely drawn chart, the line represents reach, going from a single user to the entire population. Most marketers stop 20% of the way through, and put all of their focus on their customer base through search and programmatic RTB display efforts—using data to ensure they are reaching the right “intenders,” but missing the opportunity to create new ones through branding. On the far right (dotted line), you have all the potential customers that are addressable; these users are still “targeted,” but so widely that hitting them with messaging is fraught with waste. This is the digital equivalent of advertising to “the demo” on television. Sure, it creates demand for BMWs, but only a certain portion of the audience has enough dough to afford a 5-series.

The simple message that many marketers continue to miss—either by focusing way too much on DR, or over indexing on untargeted branded efforts—is that a balance is critically important in the digital marketing mix. While it sounds simple to find the right balance, it actually requires a strong base of knowledge to execute properly. This is what I mean:

  • Measure Differently:  Before you can understand the mix you need to achieve between branding and DR, you need to agree on a meaningful metric. Far too many digital campaigns are judged by three-letter performance acronyms that are proxies for success. Great CTR and CPA are positive signs—that you are doing all the right things to reach the audience you have already earned. They are poor indicators of your success in building new customers. Thinking holistically about your marketing efforts yields new benchmarks: If your company typically sell 200 widgets in the Upper West Side of Manhattan, why shouldn’t you be able to sell the same amount in San Francisco’s Nob Hill? In other words, how about using “profit optimization” as the primary metric? This requires a relationship with the advertiser that goes beyond the agency, and plenty of first-party data, which is why such simple yet effective metrics are not used frequently.
  • Spend More on Branding: Sometimes, what holds good marketing back is a reliance on known metrics. In another year, the banner ad with be 20 years old. While the banner ad ushered in an era of “measurability,” it also took marketers on a path to thinking that anything and everything could have its own success metric, and we went from a dependence on soft, panel-based, attitudinal metrics to today’s puzzling array of digital KPIs. Did Absolut vodka worry about CTR on its way to becoming the dominant liquor brand of the last quarter century? Or did they just design great packaging and put big beautiful ads on every magazine back cover they could find? At the end of the day, TBWA made a decent vodka into a great brand, and the only metric anyone ever worried about was case sales. They did it by spending LOTS of money on branding.
  • Find the Sweet Spot: Spending more on branding is obviously important for “growing the grass,” but not every product is one everyone can afford. While it made sense for Absolut to advertise to the broader population of adults in magazine, most marketers have a more limited audience and budget. Finding the sweet spot between branding and DR has a lot to do with knowing your potential customer and how they make purchase decisions. If you believe (as I do) that word-of-mouth is the most powerful medium, then it makes sense to apply as much granular targeting to a campaign—without restricting it with too much targeting data. Neighbors talk to and influence each other—and the Smiths and Joneses tend to chat on the soccer field about cars, vacations, and even the latest medical procedures. Your sweet spot is where you can faithfully blanket ads in a neighborhood or larger area that has a built-in predilection to purchase. It’s not a broad as city targeting, which wastes messaging on customers that can’t afford your products, and not so targeted as “intender” targeting, which limits your addressable audience to people who already love your brand.

Today, it seems like digital marketers are limiting their reach to their existing customers—spending lots of lower-funnel effort dragging “intenders” across the finish line, so they can attribute lower acquisition costs to their campaigns. Although the real customer growth is grown through branding efforts, most marketers are scared to open up the spigot and deliver large amount of impressions, and especially hesitant to migrate marketing to cookie-less mobile devices and tablets which are harder to target. But to grow customers, you need to introduce them to your brand—and find them where they live. When you water the lawn religiously, there is always plenty to cut.

[This post originally appeared in AdExchanger on 10/7/2013]

Media Planning

The Great Time Suck

Nearly 70% of the $9 billion display media market still occurs in the “transactional RFP” channel. Source: Arkose Consulting
Nearly 70% of the $9 billion display media market still occurs in the “transactional RFP” channel. Source: Arkose Consulting

Why Publishers Hate the Transactional RFP Business 

I have been thinking about, and trying to solve, agency digital workflow problems since 2008.

Given the complexity of digital media, the variety of creative sizes, millions of ad-supported sites, and dozens of ad servers, analytics platforms, order management and billing tools, it goes without saying that the digital marketing stack has been hard for any agency to put together.

Recent research has tracked the immense level of complexity involved in digital media planning (more than 40 steps) and the tremendous expense involved in creating the actual plan (up to 12% of the media spend). It all adds up to a lot of manual work for which agencies are not willing to pay top dollar, along with frustrated agency employees, overbilled clients and a sea of technology “solution providers” that only seem to add to the complexity.

Media planning on the agency side is a big time suck. Yet some agencies are still getting paid for it, so it’s a problem that is going to get solved when the pressure from agency clients increases to the point of action, which I think we’re just now hitting in 2013.

But who is thinking about the publishers? Despite dozens of amazing supply-side technologies for optimizing programmatic RTB yield, there are only a few providers focused on optimizing the 70% of media dollars that flow through publishers’ transactional RFP channels.

DigiDay and programmatic direct software provider AdSlot and recently studied the transactional costs of RFPs. The sheer numbers stunned me. Here’s what one person can spend on a single RFP:

  • 5.3 hours on pre-planning
  • 4.2 hours on campaign planning
  • 4.0 hours on flighting
  • 5.3 hours on maintenance
  • 3.3 hours post-campaign

That’s more than 22 hours – half a business week – spent creating a single proposal and starting a campaign, which, according to the study, has a less than 35% chance of getting bought and a staggering 25% chance of getting canceled for performance reasons after the campaign begins. The result is a 25% net average win rate. That’s a lot of work, especially when you consider how easy it is for agencies to lob RFP requests over the transom at publishers. On average, publishers spend 18% of revenue just responding to RFPs, which translates to 1,600 man-hours per month, according to the study.

So, we have a situation in which agencies, which are firmly in control of the inventory procurement process, are not only wasting their own time planning media, they are also sustaining a system in which their vendors are wasting numerous hours comporting with it. In short, agencies spray RFPs everywhere, and hungry publishers respond to most. The same six publishers make the plan every year, and a lot of publishers’ emails go unanswered. What a nightmare.

 A Less-Than-Perfect Solution

To combat this absurdity, many publishers have placed large swaths of their mid-premium inventory in exchanges where they realize 10% of their value but avoid paying for 1,600 hours of work. The math isn’t hard if you know how agencies value your inventory. Publishers aren’t stupid. Inventory is their business, and most work very hard creating content to create those impressions. These days, every eyeball has a value. Biddable media has made price discovery somewhat transparent for most[CO1]  inventories. Programmatic RTB is great, but not all publisher inventories[TH2]  are created equal. A small, but highly valuable percentage will never find its way into an SSP.

Publishers will always want to control their premium inventories as long as they receive a greater margin after transactional RFP labor costs. Publishers who actually have strong category positioning, contextual relevance, high-value audience segments and a brand strong enough to offer advertisers a “halo” have to manage their transactional business so they can maintain control over who advertises and what they pay. This looks the year that demand- and supply-side software solutions may finally come together to solve the problem of “transactional RFP” workflow.

A couple of new developments:

Demand-Side Procurement Systems Are Evolving: Facing significant pushback from clients and seeing new and accessible self-service media buying platforms gain share, agencies are looking hard at tools to gain efficiency. Incumbent software systems like Strata and MediaOcean are modernizing, while new, Web-based tools are gaining adoption among the middle market. Suddenly workflow efficiency is all the rage and agencies that spend 70% of their money in the transactional RFP space want a 100% solution.

Supply-Side Direct Sales Systems Are Available: A few years ago, there were lots of networks and marketplaces for publishers to put inventory before going directly into exchanges. Many were more generous than today’s exchanges, but still offered low-digit CPMs and not much control over inventory. Now there are a variety of systems that plug directly into DFP and enable publisher sales teams to have real programmatic control over premium inventory. AdSlot, ShinyAds and iSocket are rapidly gaining adoption from publishers that want another premium channel to leverage, without giving up pricing control. To succeed, these publishers’ systems must be connected to the platforms that manage demand.

Who Put Peanut Butter Into My Chocolate? What is slowly happening, and will continue in a huge way in 2014, is that demand- and supply-side workflow solutions will come together. What does that mean from a practical standpoint? Planning systems will be able to communicate with ad servers, eliminating double entry work; ad servers will be able to communicate with order management and billing systems, eliminating even more duplicative work; and the entire demand side system will be able to communicate orders directly into the publisher workflow systems and ad server.

Simply put: Agencies will be able to create a line item in a media plan, electronically transmit an order to a publisher, which the publisher will electronically accept, and the placement data will be transmitted into the publisher’s ad server. A line item will be planned, and it will begin running on the start date. Wow.

That’s what we are starting to call programmatic direct. It’s a world with a lot less Excel and email, with thousands of hours that won’t get wasted on transactional RFP workflow for agencies and publishers.

What kinds of amazing things can do with all that extra time?


[This post originally appeared in AdExchanger on 11.14.13]