Posts by chrisohara

I am the head of global marketing for Salesforce DMP and Data Studio, products which help marketers identify, expand, and activate their digital audiences across every consumer touchpoint. I am a frequent contributor to industry journals, an also the author of 6 best-selling books about food and drink.

Talking Integration at DMEXCO

ChrisOHara_BeetTV

COLOGNE – At Salesforce, the acquisitions keep on coming, most recently that of AI-powered marketing intelligence and analytics platform Datorama. The company’s ongoing mantra is “integration” and it seems to have no shortage of assets to leverage in that quest.

It all stems from what Chris O’Hara, VP, Product Marketing, calls the “fourth industrial revolution” led by things like data, AI and the internet of things.

“It’s harder for marketers to deliver personalization at scale to consumers and that’s the goal. So everything we’re doing at Salesforce is really about integration,” O’Hara says in this interview with Beet.TV at the recent DMEXCO conference.

By way of examples, he cites the acquisition of ExactTarget about four years ago with the intention of making email “a very sustainable part of marketing, such that it’s not just batch and blast email marketing but it’s also your single source of segmentation for the known consumer.” The end result was the ExactTarget Marketing Cloud Salesforce Integration.

In late 2016, Salesforce bought a company called Krux and within six months had morphed it into Salesforce DMP. It was a way to assist marketers in making sense of households “comprised of hundreds of cookies and dozens of different devices” and aggregate them to a single person or households “so can get to the person who makes the decision about who buys a car or what family vacation to take,” O’Hara says.

Salesforce DMP benefits from machine-learned segmentation, now known as Einstein Segmentation, to make sense out of the thousands of attributes that can be associated with any given individual and determine what makes them valuable. Developing segments by machine replaces “you as a marketer using your gut instinct to try to figure out who’s the perfect car buyer. Einstein can actually tell you that.”

In March of 2018, MuleSoft, one of the world’s leading platforms for building application networks, joined the Salesforce stable to power the new Salesforce Integration Cloud. It enables companies with “tons of legacy data sitting in all kinds of databases” to develop a suite of API’s to let developers look into that data and “make it useful and aggregate it and unify it so it can become a really cool, consumer-facing application, as an example.”

Datorama now represents what O’Hara describes as a “single source of truth for marketing data, a set of API’s that look into campaign performance and tie them together with real marketing KPI’s and use artificial intelligence to suggest optimization.”

In addition to driving continual integration, Salesforce sees itself as “democratizing” artificial intelligence, according to O’Hara. “There’s just too much data for humans to be able to make sense of on their own. You don’t have to be a data statistician to be able to use a platform like ours to get better at marketing.”

This interview is part of a series titled Advertising Reimagined: The View from DMEXCO 2018, presented by Criteo. Please find more videos from the series here.

Advertisements

The Identity Based Data Platforms of the Future

21_WhoAreYou_nowplay_small_1

Today’s disparate traditional databases and connected devices make “people-based” marketing as difficult and awkward as this interaction. 

Currently, marketers don’t have a single source of truth about their consumers. Tomorrow, there must be a single place to build consumer profiles with rich attribute data, and provisioned to the systems of engagement where that consumer spends their time.

At a recent industry event, we heard a lot about the upcoming year in marketing, and how data and identity will play a key role in driving marketing success.

As a means to master identity, some companies have heralded the idea of the customer data platform (CDP), but the category is still largely undefined. For example, many Salesforce customers believe that they already have a CDP. The reason? They have several different ways of segmenting known and unknown audiences between a data management platform (DMP) and CRM platform.

In an article I wrote here last year, I introduced a simple “layer cake” marchitecture, describing the three core competencies for effective modern marketing. In such a fast moving and evolving industry, I have since refined it to the core pillars of identity, orchestration and intelligence:

marchitecture cake

With this new marchitecture, brands have the ability to know consumers, engage with them through each touchpoint and use artificial intelligence to personalize each experience.

Mastering each layer of complexity is difficult, requiring an investment in time, technology and people. Lets focus on perhaps the most important – the data management layer where the new CDP category is trying to take hold.

The next wave of data management

By now, it’s safe to say marketers have mastered managing known data. A few years ago, when I was working for a software company that also managed postal mailing lists, I was astonished at the rich and granular data attached to mailing lists. There is a reason direct mail companies can justify $300 CPMs – it works, because direct marketers truly know their customers.

After joining Salesforce, I was similarly awed by the power to carefully segment CRM data, and provision journeys for known customers spanning email, mobile, Google and Facebook, customer service interactions and even community websites.

How can we get to this level of precision in the world of unknown (anonymous) consumer data?

As marketing technology and advertising technology converge, so must the identity infrastructure that underlies both. Put more simply, tomorrow’s systems need a single, federated ID that is trust-based. Companies must have a single source of truth for each person, the ability to attach various keys and IDs to that unified identity, as well as have a reliable and verifiable way to opt people out of targeting.

Let’s take a look at what that might look like:

federated ID

This oversimplification looks at the various identity keys used for each system and the channels they operate in. Today, the CRM is the system of record for engaging consumers directly in channels like direct mail, email campaigns and service call centers. The DMP, on the other hand, is the system of record for more passive, anonymous engagement in channels like display, video and mobile.

When consumers make themselves known, they “pull” engagement from their favorite brands by requesting more information and opting into messaging. At the top of the funnel, we “push” engagements to them via display ads and social channels.

As a marketer, if you have the right technologies in place, you can seamlessly connect the two worlds of data for more precise consumer engagement. The good news is that, martech and adtech have already converged. Recent research from Salesforce shows that 94% of marketers use CRM data to better engage with consumers through digital advertising, and over 91% either already own or plan to adopt DMP over the next year.

So, if mastering consumer identity is the most important element in building tomorrow’s data platform then what, exactly, are the capabilities that need to be addressed? There are three:

1. A single data segmentation engine

Currently, marketers don’t have a single source of truth about their consumers.

Here’s why: Brands build direct mail lists and email lists in their CRM. Separately, they build digital lists of consumers in a DMP tool. Then, they have lists of social handles for followers in various platforms like Facebook and Twitter. Consumer behaviors like browsing and buying that happen on the ecommerce platforms are often not integrated into a master data record. And distributed marketing presents a challenge because a big mobile company or auto manufacturer may have thousands of franchised locations with their own, individual databases.

Segmentation is all over the place. Tomorrow, there must be a single place to build consumer profiles with rich attribute data, and provisioned to the systems of engagement where that consumer spends their time.

2. Data pipelining and governance capabilities

This identity layer must also have the ability to provision data, based on privacy and usage restrictions, to systems of engagement.

For example, when a consumer buys shoes, they should be suppressed from promotions for that product across all channels. When a consumer logs a complaint on a social channel, a ticket needs to be opened in the call center’s system for better customer service. When a person opts out and chooses to be “forgotten,” the system needs to have the ability to delete not only email addresses, but hundreds of cookies, platform IDs and other addressable IDs in order to meet compliance standards with increasingly restrictive privacy laws and, more importantly, giving consumers control over their own data.

Finally, marketers need the ability to ingest valuable DMP data back into their own data environments to enrich user profiles, perform user scoring, as well as build propensity models and lifetime value scores. This requires granular data storage, fast processing speeds and smart pipelines to provision that data.

3. Leaping from DMPs to holistic data management

Ad technology folks are guilty of thinking of cross-device identity (CDIM) as the definition of identity management. Both deterministic and predictive cross-device approaches are more important than ever, but in a world where martech and adtech are operating on the same budgets and platform, today’s practitioner must think more broadly.

Marketers can no longer depend solely on another party’s match table to bridge the divide between CRM and DMP data. A more durable, and privacy-led connector between known and unknown ID types is required. Moreover, when they can, marketers need the ability to enrich email lists with anonymous DMP attributes to drive more performance in known channels—now only possible when a single party manages the relationship.

These three tenets of identity are the starting point for building the data platform of the future. The interest and excitement around CDPs is well placed, and a positive sign that we are evolving our understanding of identity as the driving force behind the changes in marketing.

[This article originally appeared in Econsultancy’s blog on 2/1/2018]

4 Better Ways to Sell Technology

bad_presentation

A lot of you guys make your living selling technology in the advertising and marketing technology space. It’s a great and noble occupation, but not for everyone. Our industry moves very fast, and software is always a stutter step behind. We are trying to solve problems for big brands and media companies, and a lot of what we sell sounds pretty much the same as the competition. Even if you truly have the best product, it’s really hard to get people’s attention. When you finally get it, it’s very hard to truly differentiate yourself and your products. In first meetings and big pitches, you have to leave the meeting accomplishing three basics: your potential customer should like you enough to work with you, trust you to do the work, and believe that your company can solve their problem.

In first meetings and big pitches, you have to leave the meeting accomplishing three basics: your potential customer should like you enough to work with you, trust you to do the work, and believe that your company can solve their problem. Like, trust and belief are pretty simple asks—but very hard to establish in meetings.

Does your typical one-hour meeting look like this?

  • Get the monitor set up and internet access established (10 minutes)
  • Go around the room with introductions (5 minutes)
  • Salesperson introduces the meeting and explains why you are there (10 minutes)
  • Salesperson gives the standard “about the company” pitch (15 minutes)
  • Subject matter expert talks about some use cases and benefits (20 minutes)
  • Demo (0 minutes. Oops. No time left for demo).

I have been in many of these meetings as a potential buyer, and I have also presided over quite a few of these meetings. Some are better than others, but for the most part, they are pretty terrible. Here are four things you can change up for your next meeting.

Stop the Slides

Here’s what happens when you deliver a slide presentation. If you show a slide with text on it, your audience will start reading it. In fact, they will finish reading it way before you stop delivering the content, and then they start thinking about what they are going to do for lunch. Maybe you think you’ve built the most perfect slide ever…full of compelling content and gleaming with ideas? Well, perhaps you have but you’ve alienated half of the room; the slide is the perfect level for the folks who already get it, and way too technical for the newbies (or vice versa). The approach here is to use a good headline and a gigantic picture of something interesting. Show a hammer, elephant, or a guy jumping out of a plane. The internet is full of great options. “Why is there a picture of a guy jumping out of a plane?” your prospect wonders. Your potential client will listen to you until he figures it out.

Grab a Marker

In the technology space, we sell a lot of complicated stuff, and we have a lot of ‘splaining to do in meetings, to borrow the popular Desi Arnaz phrase. Many of our potential customers don’t really know how the Internet works, and that’s okay. A 23-year old media planner at an agency isn’t immediately required to grok the differences between data integration types, but they still have influence over considerable budget dollars. What they need is some education, and that’s where your friend the whiteboard comes in. Why do mediocre actors salvage their careers on the stage? Because it’s harder. You have to know your material, deliver your lines, and there’s nowhere to hide. People respect that, and they will respect you when you close your laptop, pick up a dry erase marker and start explaining what your technology does, why it’s different, and how it will solve a problem. Plus, the element of theater is fun. People know exactly what you are going to say when you deliver a slide, so you will likely be judged on your delivery and the cut of your suit. Pick up a marker, and you will be judged by the size of your brain.

Show, Don’t Tell

Similar to the educational nature of whiteboarding, there is magic in a good software demo. After explaining all of the wonderful problems you are going to solve over 40 minutes, you will likely have a highly skeptical audience. Every other vendor has rolled in and also promised to solve the age-old “right person, right message, right time” conundrum, and you are just the latest in the pack. Whenever there is an opportunity to go into the software and demonstrate exactly what you are talking about, you should take it. “Did you ask about my integration with Amazon? Great, let me pull that up in our UI and show you exactly what to do.” As an industry, we also seem to suffer from using solutions engineers as a crutch. Guess what? If you need a highly technical person to walk through a few screens, then your client just found out that you have a product that only his most technical people can use. That’s a gigantic loser. If you sell software, you should be capable of giving a basic UI demo.

 Tell Stories

People are people, and they communicate best with storytelling. You don’t need to be a latter-day Walt Disney at your next meeting, but you do have to be able to tell a story similar to this: “Ron from Big Company has the same exact problem you guys are having. We worked with Ron and his team for 18 months and figured out exactly how to solve it. Ron is now an SVP. Hey, we should get you out to lunch with Ron, and he can tell you all about it.”

An old boss used to tell me that a sale needs to get your client “paid or made” We can certainly help people get paid by saving the money through efficiency, and “make” their careers with a successful implementation. People love to hear that similar people are having the same issues, and they don’t want to feel left behind. By golly, if this was good enough for Ron at Big Company it’s good enough for me. A good story should be realistic, inspire, differentiate your technology—but also be referenceable.

Because they will call Ron.

Why Most of Today’s DMPs are Lousy

8022_sucklessHow Granular Data Collection and a Robust Second-Party Data Strategy Changes the Game

The world’s largest marketers and media companies have strongly embraced data management technology to provide personalization for customers that demand Amazon-like experiences. As a single, smart hub for all of their owned data (CRM, email, etc)—and acquired data, such as 3rd party demographic data —DMPs go a long way towards building a sustainable, modern marketing strategy that accounts for massively fragmented digital audiences.

The good news is most enterprises have taken a technological leap of faith, and embraced a data strategy to help them navigate our digital future. The bad news is, the systems they are using today are deeply flawed and do not produce optimal audience segmentation.  

A Little DMP History

Ten years ago, a great thing called the data management platform (DMP) started to power big publishers. These companies wanted to shift power away from ad networks (upon whom the publishers relied to monetize their sites) and give publishers the power to create relevant audiences directly for advertisers. By simply placing a bit of javascript in the header of their websites, DMPs could build audience segments using web cookies, turning the average $2 CPM news reader into a $15 CPM “auto-intender.” By understanding what people read, and the content of those pages,  DMPs could sort people in large audience “segments” and make them available for targeting. Now, instead of handing over 50% of their revenue to ad networks, publishers could pay a monthly licensing fee to a DMP and retain the lion’s share of their digital advertising dollars by creating their own segmented audiences to sell directly to advertisers.

Marketers were slower to embrace DMP technology, and they quickly grasped the opportunity too. Now, instead of depending on ad networks to aggregate reach for them, they started to assemble their own first-party data asset—overlapping their known users with publishers’ segments, and buying access to those more relevant audiences. The more cookies, mobile IDs, and other addressable keys they could collect, the bigger their potential reach. Since most marketers had relatively small amounts of their own data, they supplemented with 3rd-party data—segments of “intenders” from providers like Datalogix, Nielsen, and Acxiom.

The two primary use cases for DMPs have not changed all that much over the years: both sides want to leverage technology to understand their users (analytics) and grow their base of addressable IDs (reach). Put simply, “who are these people interacting with my brand, and how can I find more of them?” DMPs seem really efficient at tackling those basic use cases, until you find out that they were doing it the wrong way the whole time.

What’s the Problem?

To dig a bit deeper, the way first-generation DMPs go about analyzing and expanding audiences is through mapping cookies to a predetermined taxonomy, based on user behavior and context. For example, if my 17-year-old son is browsing an article on the cool new Ferrari online, he would be identified as an “auto intender” and placed in a bucket of other auto intenders. The system would not store any of the data associated with that browsing session, or additional context. It is enough that the online behavior met a predetermined set of rules for “auto-intender” to place that cookie among several hundred thousand other “auto- intenders.”

The problem with a fixed, taxonomy-based collection methodology is just that—it is fixed, and based on a rigid set of rules for data collection. Taxonomy results are stored (“cookie 123 equals auto-intender”)—not the underlying data itself. That is called “schema-on-write,” an approach that writes taxonomy results to an existing table when the data is collected. That was fine for the days when data collection was desktop-based and the costs of data storage were sky-high, but it fails in a mobile world where artificial intelligence systems crave truly granular, attribute-level data collected from all consumer interactions to power machine learning.

There is another way to do this. It’s called “schema-on-read,” which is the opposite of schema-on-write. In these types of systems, all of the underlying data is collected, and the taxonomy result is created upon reading all of the raw data. In this instance, say I collected everything that happened on a popular auto site like Cars.com? I would collect how many pages were viewed, dwell times on ads, all of the clickstream collected in the “build your own” car module, and the data from event pixels that collected how many pictures a user viewed of a particular car model. I would store all of this data so I could look it up later.

Then, if my really smart data science team told me that users who viewed 15 of the 20 car pictures in the photo carousel in one viewing session were 50% more likely to buy a car in the next 30 days than the average user, I would build a segment of such users by “reading” the attribute data I had stored.  This notion—total data storage at the attribute (or “trait”) level, independent of a fixed taxonomy—is called completeness of data. Most DMPs don’t have it.

Why Completeness Matters

Isn’t one auto-intender as good as another, despite how those data were collected? No. Think about the other main uses of DMPs: overlap reporting and indexing. Overlap reporting seeks to overlay an enterprise’s first party data asset with another. This is like taking all the visitors to Ford’s website, and comparing that audience to every user on a non-endemic site, like the Wall Street Journal. Every auto marketer would love to understand which high-income WSJ readers were interested in their latest model. But, how can they understand the real intent of users if they are just tagged as “auto intenders?” How did the publisher come to that conclusion? What signals contributed to having that those users qualify as “intenders” in the first place? How long ago did they engage with an auto article? Was it a story about a horrific traffic crash, or an article on the hottest new model? Without completeness, these “auto intenders” become very vague. Without all of the attributes stored, Ford cannot put their data science team to work to better understand their true intent.

Indexing, the other prominent use case, scores user IDs based on their similarity to a baseline population. For example, a popular women’s publisher like Meredith might have an index score of 150 against a segment of “active moms.” Another way of saying this is that indexing helps understand the “momness” of those women, based on similarity to the  overall population. Index scoring is the way marketers have been buying audience data for the last 20 years. If I can get good reach with an index score above 100 at a good price, then I’m buying those segments all day long. Most of this index-based buying happens with 3rd-party data providers who have been collecting the data in the same flawed way for years. What’s the ultimate source of truth for such indexing? What data underlies the scoring in the first place? The fact is, it is impossible to validate these relevancy scores with the granular, attribute-level data being available to analyze.

Therefore, it is entirely fair to say that most DMPs have excellent intentions, but lack the infrastructure to perform 100% of the most important things DMPs are meant to do: understand IDs, and grow them through overlap analysis and indexing. If the underlying data has been improperly collected (or not there at all), then any type of audience profiling by any means is fundamentally flawed.

Whoops.

What to do?

To be fair, most DMPs were architected during a time when it was unnecessary to collect data through a schema-on-read methodology—and extremely costly. Today’s unrelenting shift to AI-driven marketing necessitates this approach to data collection and storage, and older systems are tooling up to compete. If you want to create a consumer data platform (“CDP”), the hottest new buzzword in marketing, you need to collect data in this way. So, the industry is moving there quickly. That said, many marketers are still stuck in the 1990s. Older DMPs are somewhat like the technology mullet of marketing—businesslike in the front, with something awkward and hideous hidden behind.

Beyond licensing a modern, schema-on-read system for data management so marketers can collect their own data in a granular way, there is another way to do things like indexing and overlap analysis well: license data from other data owners who have collected their data in such a way. This means going well beyond leveraging commoditized third-party data, and looking at the world of second-party data. Done correctly, real audience planning starts with collecting your own data effectively and extends to leveraging similarly collected data from others—second party data that is transparent, exclusive, and unique.