Trends in Programmatic Buying

 

thefuture

The digital marketing future we were promised years ago looks pretty lame in retrospect. This is an image of a trading desk supervisor at Razorfish, circa 2013.

2015 has been one of the most exciting years in digital driven marketing to date. Although publishers have been leading the way in terms of building their programmatic “stacks” to enable more efficient selling of digital media, marketers are now catching up. Wide adoption of data management platforms has given rise to a shift in buying behaviors, where data-driven tactics for achieving effectiveness and efficiency rule. Here’s a some interesting trends that have arisen.

 

Purchase-Based Targeting

Remember when finding the “household CEO” was as easy as picking a demographic target? Marketers are still using demographic targeting (Woman, aged 25-44) to some extent, but we have seen a them shift rapidly to behavioral and contextually based segments (“Active Moms”), and now to Purchase-Based Targeting (PBT). This trend has existed in categories like Automotive and Travel, but is now being seen in CPG. Today, marketers are using small segments of people who have actually purchased the product they are marketing (“Special K Moms”) and using lookalike modeling to drive scale and find more of them. These purchase-defined segments are a more precise starting point in digital segmentation—and can be augmented by behavioral and contextual data attributes to achieve scale. The big winners here are the folks who actually have the in-store purchase information, such as Oracle’s Datalogix, 84.51, Nielsen’s Catalina Solutions, INMAR, and News Corp’s News America Marketing.

Programmatic Direct

For years we have been talking about the disintermediation in the space between advertisers and publishers (essentially, the entire Lumascape map of technology vendors), and how we can find scalable, direct, connections between them. It doesn’t make sense that a marketer has to go through an agency, a trading desk, DSP an exchange, SSP, and other assorted technologies to get to space on a publisher website. Marketers have seen $10 CPMs turn into just $2 of working media. Early efforts with “private marketplaces” inside of exchanges created more automation, but ultimately kept much of the cost structure. A nascent, but quickly emerging, movement of “automated guaranteed” procurement is finally starting to take hold. Advertisers can create audiences inside their DMP and push them directly to a publisher’s ad server where they have user-matching. This is especially effective where marketers seek as “always on” insertion order with a favored, premium publisher. This trend will grow in line with marketers’ adoption of people-based data technology.

Global Frequency Management

The rise in DMPs has also led to another fast-growing trend: global frequency management. Before marketers could effectively map users to all of their various devices (cross-device identity management, or CDIM) and also match users across various execution platforms (hosting a “match table” that assures user #123 in my DMP is the same guy as user #456 in DataXu, as an example), they were helpless to control frequency to an individual. Recent studies have revealed that, when marketers are only frequency capping at the individual level, they are serving as many as 100+ ads to individual users every month, and sometimes much, much more. What is the user’s ideal point of effective frequency is only 10 impressions on a monthly basis? As you can see, there are tremendous opportunities to reduce waste and gain efficiency in communication. This means big money for marketers, who can finally start to control their messaging—putting recovered dollars back into finding more reach, and starting to influence their bidding strategies to get users into their “sweet spot” of frequency, where conversions happen. It’s bad news for publishers, who have benefitted from this “frequency blindness” inadvertently. Now, marketers understand when to shut off the spigot.

Taking it in-House

More and more, we are seeing big marketers decide to “take programmatic in house.” That means hiring former agency and vendor traders, licensing their own technologies, and (most importantly) owning their own data. This trend isn’t as explosive as one might think, based on the industry trades—but it is real and happening steadily. What brought along this shift in sentiment? Certainly concerns about transparency; there is still a great deal of inventory arbitrage going on with popular trading desks. Also, the notion of control. Marketers want and deserve more of a direct connection to one of their biggest marketing costs, and now the technology is readily available. Even the oldest school marketer can license their way into a technology stack any agency would be proud of. The only thing really holding back the trend is the difficulty in staffing such an effort. Programmatic experts are expensive, and that’s just the traders! When the inevitable call for data-science driven analytics comes in, things can really start to get pricey! But, this trend continues for the next several years nonetheless.

Closing the Loop with Data

One of the biggest gaps with digital media, especially programmatic, is attribution. We still seem to have the Wannamaker problem, where “50% of my marketing works, I just don’t know which 50%.” Attitudinal “brand lift” studies, and latent post-campaign sales attribution modeling has been the defacto for the last 15 years, but marketers are increasingly insisting on real “closed loop” proof. “Did my Facebook ad move any items off the shelf?” We are living in a world where technology is starting to shed some light on actual in-store purchases, such that we are going to able to get eCommerce-like attribution for corn flakes soon. In one real world example, a CPG company has partnered with 7-11, and placed beacon technology in the store. Consumers can receive a “get 20% off” offer on their mobile device, via notification, when the they approach the store; the beacon can verify whether or not they arrive at the relevant shelf or display; and an integration with the point-of-sale (POS) system can tell (immediately) whether the purchase was made. These marketing fantasies are becoming more real every day.

Letting the Machines Decide

What’s next? The adoption of advanced data technology is starting to change the way media is actually planned and bought. In the past, planners would use their online segmentation to make guesses about what online audience segments to target, an test-and-learn their way to gain more precision. Marketers basically had to guess the data attributes that comprised the ideal converter. Soon, algorithms will atart doing the heavy lifting. What if, instead of guessing at the type of person who buys something, you could start with the exact composition of that that buyer? Today’s machine learning algorithms are starting at the end point in order to give marketers a hige edge in execution. In other words, now we can look at a small group of 1000 people who have purchased something, and understand the commonalities or clusters of data attributes they all have in common. Maybe all buyers of a certain car share 20 distinct data attributes. Marketers can have segment automatically generated from that data, and expend it from there. This brand new approach to segmentation is a small harbinger of things to come, as algorithms start to take over the processes and assumptions of the past 15 years and truly transform marketing.

It’s a great time to be a data-driven marketer!

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s